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~EISTRACT

The Galileo Near-Infrared Mapping Spectrometer
(NIMS) is a sophisticated multi-spectral instrument that
was developed to study the spatiallcompositional
aspects of the atmosphere of Jupiter and the suriaces
of it’s satellites, Since its original development, the
communication capability of the Galileo spacecraft has
been severely reduced as the result of a failure of
ground controllers to open the main antenna. The data
rate which will be available for all instruments at the first
,Jupiter  encounter in 1995 has been reduced by several
orders  of magnitude (even after recent numerous
improvements to data link efficiency,)

Because of this severe limitation, real-time return of
science data is now secondary. The primary means of
returning Galileo science data will be to store encounter
data using the on-board tape recorder and then
gradually play it back over an extended period of time,
But even this time period is restricted to approximately
one month since the tape recorder must be ready for
additional encounters as the spacecraft orbits Jupiter.

The NIMS inst rument  des igners bui l t - in
considerable flexibility to adjust parameters that affect
spectral resolution, spatial resolution and field of view.
Each of these affects the amount of data generated. As
a result of the severe communication constraints, this
flexibility will be enhanced even further by software
changes to enable the NIMS scientists to maximize the
value of their science return.

The NIMS instrument will also employ adaptive
lossless data compression (by factors of 1,5:1 up to
4:1 ) to further improve its return capabilities. This paper
describes how this is accomplished such that the
flexibility to arbitrarily alter instrument parameters is not
jeopardized.

The paper will also discuss a practical solution to
the problem of NIMS’ allocation of a fixed number of bits
over a full tape load in the face of changing data
characteristics and associated greatly diverse data
compression factors. The approach described is a
global compression rate allocation strategy, designed to
achieve nearly-optimal bit usage over a complete tape
load. Data history and a priori planning are the major
inputs to the strategy’s control structure. This
mechanism then autonomously makes adjustments in
specific parameters which affect data generation to
ensure compliance with the overall bit constraint. By

“looking ahead” the strategy results in more accurate
decision making, minimizing unnecessary reductions in
data quality and ensuring that unused bits will not be
wasted.

lJWXWCZQN

1 he Galileo Near-Infrared Mapping Spectrometer
(NIMS) employs a combination of imaging and
spectroscopic methods.1-3  Simultaneous use of these
two methods yields a powerful combination for the
investigation of planetary geology and atmospheres.
NIMS was developed as an experiment to investigate
Jupiter and the Jovian satellites during a two year orbital
operation period commencing in December 1995. As
originally conceived, the acquisition of science data
would be primarily a real-time operation. Most data
would be communicated imniediately through a data link
with a capability of over 100 Kbits/sec. But this is no
longer possible.

llW_EYQ121E.m

The Galileo spacecraft suffered a dramatic loss in
communication capability when its primary antenna
failed to open. After numerous attempts to open the
antenna, the loss appears to be permanent.
Consequently, encounters at Jupiter will be forced to
rely on an alternate low-gain antenna system, reducing
downlink data rates by several orders of magnitude.
Realization of this situation prompted major efforts to
consider all avenues for improving the science return
from orbital operations. This modified mission to Jupiter
will be called here the “Low-Gain Antenna (LGA)
Mission.”4

Datalink improvements for the LGA Mission will
come from: the use of much longer convolutional codes
in conjunction with a more sophisticated application of
Reecl-Solomon  codes, antenna arraying and other Deep-
Space Network (DSN) improvements, But even with
these changes, the orbital mission will be limited to data
rates between 10 and 100 bits per second, only slightly
better than when Mariner 4 first sent back images of
Mars in 1964.

Other efforts to improve the science return
capabilities have focussed on modifications to the way
data is acquired, stored and communicated (packet
telemetry). Such efforts have been constrained by the
limited on-board processing resources of the Galileo
spacecraft, This includes several ancient RCA 1802
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microprocessors, each with a capability of only 0,066
million operations per second.*

Because of the extremely low downlink data rates,
science data generated at an encounter must be
accumulated on the Galileo tape recorder for later
transmission, But downlink transmission time for one
encounter is generally limited to “only” about 1 month
before preparations for the next must take precedence.

Except for imaging data, any data placed on this
recorder must be stored in raw, uncompressed form.
Further, the recorder’s capacity is insufficient to store
all the data that could be acquired during an encounter.
Thus it has become important to scrutinize what data is
actually placed on the recorder.3

Unless the primary Galileo antenna becomes at
least partially operable, there are no conditions under
which the transmission time between encounters is
sufficient to communicate all of the data bits stored on
the recorder. It was this situation that prompted the
development of software driven data compression and
other enhancements to assist in the post-encounter
downlink process.

QitltUmwmsbn  for Gall  QQI

Images for optical navigation will be compressed by
a system which achieves very high compression factors
of over 100:1.5 This is accomplished by first
determining where important stars or planetary/satellite
limbs are located within an image and then transmitting
only small regions around those locations. This concept
was first demonstrated to the National Aeronautics and
Space Administration (NASA) in 1981.6

Some science imaging will utilize an on-board
hardware Block Adaptive Rate Controlled (BARC) image
compression system.’ BAf3C’s  compression factor was
constrained at launch to a fixed 2.5:1, The resulting
3.24 bits/picture element guarantees near pOrfOCt
quality. But to achieve desired higher compression
factors a Iossy cosine transform based compression
algorithm will be applied to uncompressed images stored
on the recorder,8  This same algorithm will be applied to
one other instrument,

Adaptive Iossless compression (coding), in the
form of an 1802-constrained version of the Rice
Algorithms9-12  will be applied to the data of six non-
imaging instruments. The most sophisticated such
application is the multi-spectral NIMS instrument,

W NIMS instrument designers originally built-
in extraordinary flexibility to adjust parameters that
affect spectral resolution, spatial resolution and field of
view, This capability has become an important, but not
sufficient, asset to the data constrained LGA Mission

i
A much faster AMD 2900 microprocessor Is also on-board, but

its availability is limited and not applicable to the considerations of
this paper.

that NIMS scientists are now facing. Further software-
based improvements to  f lex ib i l i ty  are be ing
implemented. The application of adaptive Iossless
compression to NIMS data must not only achieve
valuable improvements in effective data rate
requirements but must also preserve this flexibility,

QWin.Q

The sections that follow will describe these efforts
to incorporate aclaptive Iossless compression within the
new NIMS data handling environment being developed
for the Galileo LGA Mission to Jupiter.

“Ihe data system perspective of the NIMS
instrument is provided first, For a broader insight into
the clesign  of this instrument and its original science
goals, consult Refs, 1 and 2, For more recent
considerations of the LGA Mission, consult Ref. 3.

“rhe Rice Algorithms for Iossless compression can
be applied to an extremely broad class of data sources
without the need to understand every detail about them.
And this remains true for NIMS. Hence, the algorithms
are only definecl here in sufficient detail to support a
description of their application to NIMS. Several
references are available for greater detail.9-12

The application of efficient lossless compression to
data like NIMS will generally result in data-dependent
compression factors. For many earthbound
applications this compression factor uncertainty is not
an issue. If the compression factor is less than
expected, simply take longer to transmit it. But the
NIMS instrument is basically constrained to use a fixed
number of bits per tape load. Using significantly more
bits than expected could mean the loss of valuable
data. To help afleviate this problem the global rate
allocation approach is discussed. It combines data
history, a priori planning and autonomous adjustments
to parameters to ensure compliance with the overall bit
constraint.

~JHE NfMS lNST~UMENT

AYkMAbwt  Corrw Iatii

The term correlation can be defined mathematically.
But here it will be used as a non-mathematical guide to
data similarity and expected coding efficiency.
Basically, the higher the correlation between two data
samples, the better that one sample can be predicted
from knowledge of the other. In later sections, better
prediction will mean that a fossfess compressor will tend
to per form bet ter ,  ach iev ing h igher  average
compression factors, Thus it is important to the ultimate
goal of defining an efficient lossless compressor to
identify where sample-to-sample correlation exists in
the NIMS data structure.

Itw_WaYQl!a.KWh_Mmenskm

The NIMS instrument has 17 detectors and a
Grating. If the Grating is fixed, the wavelengths
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may be denoted by Al, A2, ..,, A17 as shown in Fig, 1. If
i,he Grating is allowed to move, as many as 23 additional
wavelengths can be sampled, (The maximum number of
wavelengths is 408.)

Al?
/“0

//* \ 10 BITS/SAMPLE
~ , ,/0”

/6

L3/
AZ //’
\Ay”-- ADJACENT SAMPLES

NOT HIGHLY CONDUC1-ED

Fig, 1. Seventeen Detectors.

Mirror motion within the instrument generates 20
highly correlated samples (a vector in the y direction) for
each detector, resulting in a “data plane” of data as
!jhown in Fig. 2. The words “TOP” and “BO~”OM”  appear
here and in later diagrams to help maintain your
orientation throughout,

Spacecraft and scan platform motion creates yet
another dimension (the X direction) as illustrated in Fig.
:3 where Xo, X1, . . . etc. identify the data planes
\Jenerated  when the instrument Grating is fixed, In
instrument modes where the Grating is moving,
intermediate data planes are generated.

Note that these intermediate planes are slightly
offset in wavelength as illustrated in Fig. 4 where the
horizontal plane of possible data for the jth component,
yj, is shown.

For a specific mirror position, say Yj, grating
position x lies between ~ and X1, As x increases from

XO to X1, the observed wavelength Al from the ith

detector increases proportionally from Ai to ki+l. Thus,

with a divisions we have

wheret  = O, 1, 2, ..,, a and a can be as large as 24,

F{ewriting,

Ax =-x, - Xo ki+l -  Li
, A). =- (3)

a a

$X1.rl!21.aWL Recall that we noted in Fig. 1 that
adjacent samples between detectors at the same mirror
position (y) and grating position (x) are generally not
very correlated, Then correlation can be expected to be
even less between samples taken at point A and point B
in Fig, 4, because there is an additional change in x (and
time) also.

Ekrt when there area= 24 divisions in w and +! (see

Eqs. 1 -3), the corresponding samples between adjacent
planes (the same vector component for the same
detector) do exhibit significant correlation. Basically,
the wavelengths are simply much closer together and
the samples are thus more likely to be the same. The x
and k values differ only by Ax and AL in (3),

A
17

BOTTOM

VECTOR
OF

SAMPLES

(~i!Yj)

Fig. 2. Piane of Data
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Fig. 4. Intermediate Planes

This identifies the best situation for correlation a)
between planes. But correlation does not suddenly
disappear when these conditions are not met. More
genera l ly ,  corre la t ion (and u l t imate ly  coding t))
performance) can be expected to gradually decrease
from a maximum as samples are gradually separated
further in x, y and k. The lossless compression ~gl

Between corresponding samples in adjacent
planes when us 24;

Between corresponding samples in non-
adjacent planes.

W.*

algorithms described in later sections will address these
other situations by adapting to make the most of “rhe t parameter in Eqs.  1-3 identifies one of a-f
whatever correlation is present: data planes that lie between Grating Cycles. Each

● An LGA Mission enhancement
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plane contains seventeen 20 component vectors
corresponding to each of the 17 detectors. 1 hus for
each Grating Cycle, a particular vector can be identified
i!i S

Iby the parameters i and t, where

{1 s is 17} = detector number (5)

{O< ts a} = intermediate plane number (6)

“Corresponding Vectors” are vectors in different data
planes with the same detector number, i. “Adjacent
Planes” are planes with parameter t? differing only by 1.

Clearly, the storage and transmission requirements
‘for NIMS data can be reduced by omitting some of the
vectors which are stored and transmitted, But it is
crucial to be able to perform such “editing” in an
intelligent way that is in concert with the current science
investigations, Hence, the capability to include or
exclude any individual vector in the recordedi
transmitted data was added by software modifications,
‘This is accomplished by assigning a vector mask to
each possible vector.

Recall that the primary mode of interest is a real-
time storage of NIMS data on the tape recorder, followed
by a later processing and compression of recorded data
for non-real time transmission. A mask can be applied
both before recording and before processing
compression. These “before recording” and “after
recording*’ masks are defined by

{

1 if ~i,t to be recorded
mbr(i,t) = (7)

O Otherwise

{

1 if ~i,t to be processed
mar(i,t) = (8)

O Otherwise

Clearly, if either mask for vector ~i,t is zero, ~i,~ will not
be included in the transmission of NIMS data. The
resulting composite transmission mask is then

n$(i,~  = rnbr(i,t)” m~~(i,t) (9)

where the ‘*’ can be interpreted as either multiplication or
a logical ‘AND’.

Thus, vector masks provide a separate means for
reducing the quantity of data recorded and transmitted.
Their specification is now an important part of the LGA
planning process both before and after recording, since
their definition can significantly affect the science
content of transmitted data.

The number of vector components actually
processed for transmission has also been made
adjustable for the LGA Mission. Unlike the per vector
control provided by vector masks, changes to the
number of vectcw components apply only over large
spans of data. We will make use of this added flexibility
in later discussions of rate control.

CF ALGORITHMS FQB
lQSSlESS4Q~N

l-he most general description of the Rice Algorithms
that applies to the LGA Mission applications can be
found in Ref. 9.** Prior to the LGA Mission
considerations, software had been written by Alan
Schlutsmeyer which basically duplicated the algorithm
specifications in Ref. 9. This “Schlutsnleyer  C Code”
was then extensively used to develop and evaluate the
Rice Algorithm application to NIMS and five other Galileo
instruments. It will also form the basis of
decompression software now being developed for the
restoration of data upon return.

Following initial development, an 1802 assembler
version was writlen by Ron Burns to demonstrate flight
feasibility in speed and code size. This “Burns code” is
now the basis of on-board compression software.

B a s i c a l l y ,  t h e  Schlutsmeyer  a n d Burns
compression software provide algorithms for
representing (coding) blocks of data. This section will
describe these “block coders” and subsequent sections
will then apply them to the NIMS data structure.

Figure 5 illustrates the form of a “coding module”
which applies to the representation of very short NIMS
data blocks (i.e., lengths of 20 or less).

The input to this NIMS coding module, CN, is a J
sample block of n bit data

i = xl X2 . . . )(J (lo)

and possibly another initialization sample called a

Reference Sample, R. (~ here has no relationship to the

Xl,ip... in earlier discussions).

:
AN LGA Mission enhancement.

*’ For a less complete but more compact description consult Ref.
10.
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Fig. 5. Coding Module for Short Blocks, C N

The final coded (compressed) output sequence is
then

~=CN~,R] (11)

This process is “lossless” or “noiseless” so that, given

R, this sequence can be “decoded” back into ~

(12)

~ Data block ~
enters a simple one-dimensional predictor which
predicts that the next sample will be the same as the
previous sample. When there is no prior sample to
predict with (e.g., the first sample) or for other reasons,
the Fleference Sample, R, will be used for prediction.

The difference between an incoming sample and its

prediction produces a prediction error, Block ~ then

results in a J sample block of prediction errors, ~.
Prediction errors tend to be distributed unirnodally
around zero, Inactive, highly correlated data will tend to
produce a very peaked distribution. Similarly, more
active, less correlated data will generate broader
distributions. The sha e of these distributions is well
modeled as Laplacian.l !

The positive and negative prediction errors are then
mapped into the non-negative integers such that
(because of the unimodal error distributions) smaller
integers tend to be more likely than the larger
integers (O -* O, +1 -* +1, -1 -* +2, +2 -~ 3, . . . ). The

block of J prediction errors, ~, produces a block of J

mapped prediction errors, & Data at this point is said to
have been “preprocessed” and in the form of a
“Standard Source”.

A&MW.&YWdM_LWg!b_SQ.di  The next
step, Iabelled  “AVLC” in Fig. 1, is to represent each

mapped prediction error in ~ with a codeword from a
variable length code. Here, shorter code words are
assigned to smaller non-negative integers. (That is, the
codeword assigned to a specific non-negative integer is
never longer than the codeword assigned to a larger
non-negative integer.) When smaller integers occur
more frequently than larger ones, a goal of the
preprocessing, this assignment assures that shorter
codewords will be used more frequently than larger
ones,

The latter assignment of codewords assures that a
particular variable length code is properly used. It says
nothing about the actual efficiency of the code to
represent data. Under the assumption that the
underlying distribution of preprocessed non-negative
samples is fixed, it is possible to

1) Determine the “entropy” as

~ = - ~ pi log2 pi bits/sample (13)

where p, is the probability that integer i occurs, and

2) To generate an optimum variable length code
for a particular distribution using the famous
Huff man Algorithm.13

For all practical purposes, the entropy in Eq. 13
determines the best average performance for any code
that is Iossless, A variable length code that performs
close to the entropy can be said to be efficient.
Huff man Algorithm-generated codes can generally
produce efficient performance in narrow ranges of
entropy above about 1.5 bits/sample or so, Huffman
codes have been called optimum because they will
perform as well as any other single variable length
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code (on data generated from the Huffman code’s
design distribution),

But there are several practical problems in relying
on Huff man codes, In general, a pure Huffman code
would require storage for all its codewords. The NIMS
data quantization of 10 bits/sample would then require
storage for 1024 codewords. The problem iS far worse
for some other Galileo instruments which have 16 k)it
data samples,

But equally important, relying on a single variable
length code, Huffman or not, is not sufficient to assure
efficient performance over all the conditions that most
real data sources produce, In practice, the distribution
of non-negative integers, {pi} used in Eq. 13 is not
static, but varies over time, yielding entropies that may
vary significantly. A single Huffman code is only
“optimum” for the prescribed distribution it was designed
from. It can only be expected to remain efficient over a
narrow range of entropies. Figure 6 expands the AVLC
box in Fig. 5 to reveal the basic concept of adaptive
variable length coding usually associated with the Rice
Algorithms.

Here, there is a bank of N variable length codes,
Iabelled co, c1 , ,,,, cN-1  . Each of these is designed to
operate efficiently over a different narrow range of
entropies. A decision maker determines which of the N-
1 codes will produce the shortest coded sequence when

applied to the current Input block, ~,

The result of that decision is a “code identifier”
represented by the integer “id” and its fixed length
binary representation by

ID(id) (14)

The correct coded result is then

cid fid] (15)

But to ensure that a decoder will know which
decoding algorithm to use, the coded sequence must be
prefaced by the code identifier. Thus the overall coded
result takes the form*

AVLC [~]=  lD(id) * cid[~] = CN [i, R] (16)

where

CN[%,  R] is taken from Fig, 5 to relate back to the

original task of coding ~.

Can the need for large lookup tables be avoided?
Code cN.1 in Fig. 6 has been called the “backup” or
“default” mode, taking the form

. . . ..—.
* The asterisk,”, is used here and in later expressions to denote
mncatenatii.

(17)

Code c1 is the “fundamental sequence code”
defined for each codeword by

i zeroes
r \

fs~]=ooo...000l fori20 (18)

The structure of this code means that each codeword
can be easily generated and need not be stored.

All the other codes, starting with C3, are equally
simple. A codeword for these “Split-sample Modes” is
generated by splitting off k least significant bits from a
sample and applying the Fundamental Sequence Code
in EQ. 18 to the remaining most significant bits. Thus
again, storage for codewords is unnecessary.

Yeh recently showed that if the distribution of
prediction errors (see Fig. 5) is Laplacian,  a very
reasonable assumption, then cl, C2, . . . . cN.1 are
equivalent to Huffman codes.12  Moreover, the entropy
where these optimum codes achieve their best
performance is at

H6 m k + 2 bits/sample (19)

for k ~ 1, Thus any range of entropy beyond about 1.5
bits/sample can be efficiently covered.

Coder co is a special coder developed to provide
efficient performance at entropies as low as about 0.75
bits/sample. It employs a separate 8-codeword variabfe
length code. Look for an explanation of “PSIO” in Ref. 9.

The decision on which coder to use could optimally
be determined by comparing the coding results of each
coder. But tests have shown that, with negligible loss in
performance, decisions can be made by simply adding

up the samples in ~ and comparing the result to a set of
thresholds. The latter approach is used for the Galileo
coders.

Depending only on the number of code options
included, average performance of such a coder will be
just above the entropy as shown in Fig. 7, In instances
when data characteristics vary rapidly, measurements
of performance below an average entropy may be
observed.**

. . . . .
*A For those familiar with the contents of Ref. 9, the implemented
coder for Galileo is basicallv  PSI14,K with K = 0,1. The K=l sDlit
is done to handle 16 bit da(a and is done prior to preprocessing.
internally, PS114  parameter k can equal O or 1. Block sizes  for all
Galileo Instruments range from 4 to 20 and sample quantization
from 8 to 16 bftsk.ample. Formatting of the code Identifiers and
split-samples is slightly changed to accornodate  the limitations of
the 1002 processor.
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Now consider the more general data sequence ~

which may be made up of one or more data blocks, Xi,
which will be coded by the coding module, CN in Fig. 5,

Y=y, y~..,,y~

=ki*k2*..,*ie (20)

lD*c,d ~t)]
—–---------+

where e z 1 and the number of samples in xi is Ji, so that

the length of ~ is

e
A? ~ = ~ Ji * M samples (21)

1=1

Then for example

ii= yl y~ . . . YJ1 (22)

It is assumed that all adjacent samples in ~ are
correlated. Any sample can be used as a prediction of
the sample that follows it as in Fig, 5. Then, assuming
that a Reference Sample, R1, for the first block is

already known, the coding of ? takes the form

F’S!N,~s[~ = CN [Xl, R,] ‘ CN [X2, R2] ● , . . *

%1% , R.] (23)

where reference samples R2, R3, ..,, Re are provided
automatically as the last sample from the preceding
block (see the sample delay component in Fig, 5).

But in the case where a reference sample Is

required, ~ is coded by first using yl as a reference
sample as

F’SI tiMS [~ = YI * CN [~; , YI] *

CN[z2, R2]*. .. CN[~e,  Re] (24)

where ~~ is the J, -1 sample block

8
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~;  =  Y2 Y3 .,. YJ, (25)

For NIMS and other instruments, parameters wero

specifically chosen so that for a particular $’, the Ji will
all be the same so that

A?~=M=eJ

However, numerous values of J z 8 are supported.

Subsequent sections will describe how PSINIMs and

1%1 fiMS coders are applied to the NIMS data structure.

ll!l~m

The tth plane of a NIMS Grating Cycle is shown in

I’ig. 8. Coding and decoding of the ith vector, Qi,t can be
specified from Eq. 23 or Eq. 24 and the vector mask in
Eq. 9 as

{

PSINIMs [~i,~ ] if mt(i,o = 1

NIMS1 [Qi,t ] =

$ = empty, Otherwise
not transmitted

IQ r

NIMS2  [Ui,{ ] =

PSltiMs  [Ol,d if m,(i,~ = 1

(26)

(27)

In either case nothing is generated for vector ~i,t

unless the corresponding mask value is 1. }Iere, fii,t

takes the place of ~ in Eq. 20.

Using NIMS1  assumes that a reference sample is

available to predict the first sample in Qi,~ whereas using

NIMS2 assures that Vi,t  can be codecfldecoded
independently of all others (because the first sample of

Qi,t is used as a reference).

But we will soon be interested in a situation where
the use of both NIMS1  and NIMS2 will apply within a
plane. To designate which coding approach in Eqs. 26
and 27 to use, we specify the parameter ~,c as

{

1 if NIMS1 (in Eq. 26) is to be used

for Vi,t

Q (28)
2 if NIMS2  (in Eq. 27) is to be used

for Vl,t
Then, the coding of the Cth plane can be specified as

NIMs~l ~ [~l,(j * NlMsC2,t [~z,t] * . . .
(29)

* NIMSL17,4  [Q17,41. . .

predi~tincr fror~ Prevlws Planfxi

Again refer to Fig, 8 which shows data planes that
are adjacent to the tth. The ith vector in each plane is

highlighted, tii,~, , Vi,t+ 1, Vi,~+2.

Note that the mirror scan process actually results in
a reversal of the order of vector components in adjacent
planes.

It was noted earlier that when two data planes are
close (in x of Fig. 4) there often can be useful correlation
between corresponding samples (e.g., the jth
component of the ith vector in each plane). Then, rather
than using a “first sample” reference sample to initialize
the coding of each vector, we could instead use the
corresponding sample from a vector in a previous plane.

Specifically, in Fig. 8, the last component of ti,~ at point

B could be used to predict the first component of ~i,~+ I
at point C, and the component at point D could be used
to predict the component at E, and so on.

[Jut what about the vector masks? The component
at point D might not be available to predict the

component at E. Instead, if the vector VI,Z is
availabie,  point A could be used (perhaps with slightly
less effect since it is farther away in x and h), as shown
by the dashed line.

1~  TO account for the
vector mask, three registers are used to implement a
previous plane predictor. Each has 17 storage
positions corresponding to the 17 detectors and hence
the 17 possible vectors in each data plane. They are
iabelled here and in Fig. 9 as TOPr, BOTTOMr and
COUNTr.

TOPr and BO~”OMr  hold the values to be used for
prediction and COUNTr  determines if these stored
values will actually be used for that purpose.

When the coding of a particular plane is complete,
all the top components of vectors that have been
transmitted (their mask value in Eq. 9 is non-zero) are
stored in the corresponding position of TOPr. Similarly,
the bottom component of the same vectors are loaded
into BOTTOMr.

Then, it should be clear that these registers always
contain the top and bottom components of the most
recentiy t ransmi t ted vectors ,

All components of the COUNTr register are initially
set to zero before any transmission occurs, as

9
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Fig. 8. Adjacent Planes
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DIZII:XII

I t I

I

I

I

I
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j th
PLANE

TRANSMITTED

BOTTOM
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HOLDS TOP COMPONENTS
OF LAST TRANSMITTED
VECTORS

HOLDS BOTTCJM  COMPONENTS
OF LAST TRANSMITTED
VECTORS

DOWN COUNTERS. SET TO
T WHEN A TRANSMISSION
OCCURS

Fig. 9. Registers for Previous Plane Prediction

COUNTr(i) =Oforlsis17 (30)
If the ith vector in any plane is NOT

But  when the ith vector in any plane is transmitted, then
transmitted (its mask in non-zero), COUNTr(i) is set
to a programmable count-down parameter z COUNTr(i)  = max {COUN~”r(i) -1, O} (32)

COUNTr(i)  = ~ (31)
l“hus when the coding of a particular plane begins
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T + 1-- COUNTr(i) (33)

specifies, for the ith vector, how many planes back the
last transmitted vector occurred, And TOPr and
130 TTOMr contain the top and bottom components of
those vectors.

The coding of the &h plane is specified by the

expression in (29) if we simply identify the parameter ~,~
for each i. This is obtained from COUNTr as

{

1 if COUNTr>O

Ll,t = (34)
2 if COUNTr = O

We see from Eqs.  28, 29 and 34 that the ith vector
will be coded using coder NIMS2 whenever COUNTr = O.
E}y Eqs.  24 and 27, NIMS2 is a coder that uses the first
component in a vector (either the top or bottom
component) as a reference sample. It does not make
use of any information from other vectors. Except for
initialization situations, this occurs when the last ith
vector transmitted occurred more than T planes before
(see Eq. 32).

Conversely, the ith vector will be coded using
NIMS I whenever COUNTr(i) ~ O. NIMS1 uses the top
and bottom component of the last transmitted ith vector
(stored in TOPr and BOTTOMr) to predict the first
~arnple of the current ith vector. No reference Sample  iS
needed.

The sett ings for programmable countdown
parameter I are likely to vary for the various modes of

operation. At this time, only a range of T has been
established. But the motivation should be clear:

If ~ is set to zero, NIMS2 (which uses a reference

sample) will be used all the time. As z is increased,
predictions of initial vector components from as far
away as ~ planes is allowed (by 32 and 34). The setting
for ~ should be increased as long as it improves the
expected coding performance. At this time such data is
not available.

l?lM.lLQUi@lQn

The LGA Mission will employ packet telemetry to
package blocks of compressed or uncompressed data
from the various instruments, Slight modifications from
NASA Standards were necessary.l 4 For Galileo
specific details on this subject, consult Ref. 15 by Kuo
and Amador,

The packet telemetry format structure for NIMS can
be summarized as in Fig, 10,

~f!&%QS. Starting at the top of Fig. 10, all data is
placed into data packets that consist of a Primary
Header which identifies the data and a data field
containing data and an optional Secondary Header. The
Primary Header is a fixed 7 bytes in length and includes
information about the length of the data field which can
be variable but must be less than 512 bytes. To reduce
the penalty of packet header overhead, it is desirable to
keep the packet size (for all instruments) as large as
possible.

YKXUL packets are placed into another data
structure called a Virtual Channel Data Unit (VCDU). A
VCDU here is a fixed 446 bytes in length, including a 4
byte header. The header contains a pointer to the start
of the first packet that does not start at the beginning of
the VCDU.

Basically, T establishes the maximum separation
between data planes where correlation between
samples  can lx+ expected to improve coding efficiency.

. . .

t--
s 511 BY1’ES

*I

L=EYR:EIE!CI PACKET

.-—>////////.> /////,2//////4//////’///’ 4/,.4/////////?,////// / / /7.4///< /,, ////////////////,,//J,///////7// / / /////?///////>/////////////./7///2////////,
&4MLT/4/(<M//N4/!//.!Hfi4Mfi4M/////////7//////////,7///7//////1./////////////,

F:”zY(4:::k

=“I:EIVETE4ZI%ZI
TRANSFER

FRAME
Fig. 10. Packetizatlon
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~b. Fe”’ VCDLJ’
make up a Transfer Frame that is preceeded by a
Synchronization Marker. To protect each Transfer
Frame from communication errors, 256 bytes of Reed-
Solomon (RS) coder parity symbols follow. Unlike the J
= 8, E = 16, I = 2 hardware RS coder implemented in
conjunction with BARC7,  this software implemented RS
coder employs higher interleave depth (1) and a variable
(per codeword) error correction capability (E). This new
structure maximizes the performance advantages
obtained from a more powerful software replacement to
the baseline Galileo K = 7, v = 2 convolutional code.is
For additional information on NASA telemetry standards,
consult Ref. 17.

~. Variable length,
compressed data discussed here is very “error-
sensitive”. A single error in compressed data could
disrupt the decompression process until it can be
restarted. This is often called “error propagation”. The
concatenated channel noted above should produce
high-performance, virtually error-free communication
from spacecraft to ground. The occurrence of any
errors should be only a remote possibility. However,
there is concern for the impact of other error sources
which might cause the loss of complete 1 ransfer
Frames. T bus, to avoid these unlikely but catastrophic
events, a method was needed to assure that each error-
free data packet could be independently decoded
(decompressed).

For other instruments which employ the Rice
Algorithms the solution was to begin each packet with
one or more reference samples, as needed. The impact
of any error would therefore be confined to a packet.

For NIMS, two modes were established to deal with
the error containment issue If it materializes. Under
the expectation that the communication link will be error-
free, the inclusion of reference samples are rarely
forced on the coding process, maximizing coding

ENCOUNTER PARAMETERS

efficiency. But the effect of an error within one packet
could propagate into another,

If such unexpected error events do materialize to
cause a problem, the NIMS system will be commanded
to switch to a second mode in which every vector would
be cc)ded using NIMS2 (~ -D O), incurring the penalty of
an excess of reference samples.

MQI.DWU2Q

Initial evaluations of coding performance using real
and simulated NIMS data demonstrated that
compression factors could vary over a range from 1,3:1
up to 4:1, with an expected average of around 2:1. But
these results are preliminary since the complete
compression system has not yet been fully tested and
“real” data will have to wait until the first encounter with
Jupiter.

Y* LONG T~F CQlll13Q.

Figure 10 summarizes the general operations and
problems associated with a Jupiter encounter, when
data is recorded, and the follow-up playback period.

Encounter instrument parameters of Grating Mode,
Mirror Scan and Record Vector Masks, rMASK (see Eq.
7), are specified to determine which elements of
uncompressed NIMS data are placed on the Tape
Recorder,

For the playback period of about 1 month, NIMS is
allowed a significant fraction of the expected average
downlink data rate during the period, The result is an

allocation of ~ bits in Fig. 10. (~ may change for various
reasons, such as unusual weather).

(GRATING, r MASK, MIRROR SCAN)

‘ATA+EY:H”TAPLE;EME3-

SOFTWARE

r— A BITS ALLOWED
MIRROR SCAN

I

----(4+4
E

ERROR IN
BIT USAGE

r t
------ ------- ----- 1I 1

fTEE3-fE$iE3l--A BITS i

USED ;

L - - - - -  - - - - - -  - - - - -  - - - d

+ I
DOWNLINK p MASK

Fig.  10 . Encounter/Playback

12



f.

In general ~ is far smaller than the number of bits
stored on the recorder (already a reduction from the
maximum possible from the instrument). Significant
furlhor  reduction must come from the combination of
F’layback  Mask, PMASK (see Eq, 8), adjustments in the
size of transmitted vectors (Software Mirror Scan) and
tlhe Iossless coding.

Without Iossless  coding, combinations of rMASK
and pMASK could be chosen so that a fixed, a priori

known A bits would be presented to the downlink as
required, But the expected average 2:1 or more
compression factor for Iossless coding means that
fewer vectors need to be deleted, or more vectors can
be kept at full length, This can significantly improve the
science that can be derived from the returned data.

But unfortunately, the rate generated by an
efficient Iossless compressor will vary and its true
performance characteristics when applied to real
encounter data are as yet unknown. This compounds
the already difficult “task of assigning PMASK and
Software Mirror Scan parameters for playback - such
that science is optimized.

The uncertainty in compressor performance on
various data types could result in significantly more or

less than ~ bits being generated during the playback

cycle. If more than A bits are generated, key segments
I,owards  the end of the recorder might be lost.

Conversely, fewer than A bits used means that some
data was unnecessarily degraded (i. e., PMASK,
Soflware Mirror Scan).

Of course, this uncertainty in compression
Ipcrformance will diminish as experience with real data is
obtained. But this is not sufficient to eliminate concern.
Hence, this section explores a feedback control
approach that uses Software Mirror Scan adjustments

to ensure that ~ bits will be used,

We need some further notation for discussion
purposes. Partition the full block of encounter data (or a
subset of it - a particular observation) into N major data
blocks D1 D2, . . . . DN and let

p,(i) F. {P} (35)

be the set of all the combinations of Grating Mode,
Vector Mask and Mirror Scan that can apply to the {D,}.
Application of any PjO) to data block DI acts as a filter on
Dil modifying the number of data planes (Grating), the
number of vectors (Mask) and the number of
components (Mirror Scan).

which requires a known and fixed number of bits for
representation (we haven’t applied the Iossless coding
yet) given by

Li(i),i bits (37)

1 hen denote by

c(”) (38)

a Iossless (major block) coder made up of plane coders
of the form in Eq. 29 that applies to any modified data
block. Applying C (D) to Pi(i) [ Di] yields the coded
sequence

C ( pj(,) [DJ ) (39)

requiring

t Ifi),i bits (40)

The “compression factor” for block Di is then

!-i(i)Ll
Cfj(i),i  = ~ ,(i),i (41)

These issues and definitions are shown in Fig. 11.

But tj(i),i is not known ahead of time. It will also
vary with parameter choice and data characteristics.
For planning purposes, z j(i),i can be estimated as

= ~otik Cfj(i),i (42)

where ~),i if the best a priori estimate of compression
factor (when PIO) is applied to data of the tyPe expected
in D,).

.
The greatest uncertainty in ~](i),i  will occur before

experience on real encounter data can be obtained.

l-bus as time goes on ~jfi),i will become somewhat more
accurate. As a result of preliminary investigations,
initial planning will use

~(,),1 = 2 (43)

for all i, j.

NIMS planners have the difficult task of choosing
the Pj(i) such that science return is maximized and

$1 ~j(i),i=~ = allocated bits (44)

The result of applying Pj(i)  to [Ii results  in the

modified data block
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Fig. 11. Compression

Unfortunately, the estimates on bit usage, ~j(l),i ,
may not match the actual number of bits generated,
‘j(i), i..

msic ProiWted  Bit UsacrQ. Now assume that
tkre parameters used for the ith block, Di, can be altered
from the planned parameters as a means of controlling
rate. The altered parameters used, and the bits
generated before and after compression are indicated
by

p~(i),i  ,  q{i),i ,  ~ ;(i),i (45)

respectively.

Then the actual accumulation of data bits through
tlhe Kth block, DK, is

K
A(K) = ~ t ~i),i = A(K-1)  + t;(K),K

)=1
(46)

for 1 s Ks N and A(0) = O.

The Planned accumulation of bits through the
Kth block is similarly

At the start of the Kth block:

(47)

(48)

represents the remaining number of bits planned to be
used (based on planned Pj(i),i and a priori compression

A
estimates ~“j(i),l). The projected number of bits to be
used at completion of the last block (if parameters are
not changed) is

LI(OJ COMPRESSED

Cfl(i)!i  =  -jj(i),l

at Major Blocks

~ (NIK- 1) = A(K-1)  + R(K) (49)

The error in this projection (at the start of the Kth
block) is

c(K) = A- ~ (N]K-1)

=i(K-1)- A(K-1) (50)

But note that E(K) is simply an accumulated error that
basically assumes that all error has occurred by block
DK_l.

JJocfified Pr~lectiou. I n s t e a d ,  u s e  t h e
parameters applied in the first K-1 blocks to determine
achieved compression factors and use them to improve
the projected accumulation when a full N blocks are
completed.

Assume that adjustments are made to the
parameters used on the first K--1 blocks to control rate,
and let

(51)

be the predicted bit usage up to the Kth block where
fii),i is the a priori assumption for compression factors.
usirfg the parameters
written as

K-1
~ Ly(i),i

A(K-1 ) = ‘1=1> ‘
Cfp

actually used. But this can be

(52)

where &P is an average compression factor.

The correct actual accumulation of bits is from (46)
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=  &)A(K -1) (54)

We can similarly modify the projected bit usage in
[iq. 49 to

A’ (NIK-1) = A(K-1)  +:@K)

which from Eq. 54 reduces to

A(K-1) ~ (w
A’ (NIK-1) = A(K-1)  + --

L(K- 1 )
(55)

The error in this projection (at the start of the Kth
block) is, from Eq. 50 and Eq. 55

R(K)
e(K) =~-A(K-l) (l+-- )

k(K-1)
(56)

‘rhis result should be much more accurate in assessing
the error in projections of accumulated bits.

~. For science reasons, the only
[Jlowable change in parameters resulting from on-board
autonomous control is the Software Mirror Scan.*
Increasing or decreasing the Mirror Scan means to
increase or decrease the number of components in all
vectors of a large data block, D i. Available values for
the number of vector components are 20 (maximum),
’16, 12, 8 and 4.

Basically, the rules for rate control at the start of a
major block DK are quite simple

1) If G(K) > a+, adjust Mirror Scan for
lower rates (57)

2) If F(K) < a-, adjust Mirror Scan for
higher rates (58)

where thresholds a+ and a- could also be programmed
for each K to reflect the expected importance of the
planned segments.

Actual on-board autonomous adjustments in NIMS
Mirror Scan to control rate are expected to be based on
the error projection in Eq. 56 or the simpler approach in
E,q, 50. But note that this same structure can be
duplicated and expanded on by earth-based computers
which do not suffer from the same computation/nmmory
constraints. In this case, tables of compression factors
could be automatically maintained on earth for each
possible target type and instrument parameter set,

i“.
it IS net desirable to vary the spectral coverage of an observation.

making projections of bit usage progressively more
accurate as the mission proceeded, Appropriate control
information could be periodically communicated to the
spacecraft over the (typical) one-month playback
period.
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